
1

In this lecture, we will focus on two very important digital building blocks: counters
which can either count events or keep time information, and shift registers, which is
most useful in conversion between serial and parallel data formats. We will also
learn about a special type shift register known as Linear Feedback Shift Registers,
which are widely used to generate random digital numbers.

Lecture 9 Slide 1PYKC 11 Nov 2025 EE2 Circuits and Systems

Lecture 9

Counters & Shift Registers

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

2

Here are a list of learning outcome for this lecture. It is also tightly
coupled with Lab 2, which will take you through the steps in designing
with ROM, RAM and counter, to produce a variable frequency
sinewave generator.

Lecture 9 Slide 2PYKC 11 Nov 2025 EE2 Circuits and Systems

Learning outcomes

v How to specify a simple binary counter?
v How to convert from binary to BCD format?

v How the generate various clock signals with different
periods?

v How to specify shift registers?

v How to design a Linear Feedback Shift Register (LFSR)
that produces pseudo-random binary sequence (PRBS)?

v How to specify ROM and RAM in SystemVerilog

3

In Lab 4, you are to design an 4-bit counter as shown here. The counter has
three inputs:
1. clk – the clock signal (positive edge triggered)
2. rst – the reset signal (high reset), synchronous to clk
3. en – the enable signal, i.e. counting only if en = ‘1’
The counter has output count[3:0].

Note the following:
1. We use parameter to define the width of the counter to be 4-bit. The use

of parameter allows the same module to be used with different counter
width (covered in next lecture).

2. The use of concatenation {.} to create 8-bit value with the LSB = en signal.

Lecture 9 Slide 3PYKC 11 Nov 2025 EE2 Circuits and Systems

Example: Simple Counter

count[WIDTH-1:0]

counter1

clk

rst

en

4

This is how the SV code is mapped to the actual hardware synthesized by
Verilator.

The if-else statement is mapped to the MUX. The couting action is achieved
via the adder on the feedback path of the register.

Lecture 9 Slide 4PYKC 11 Nov 2025 EE2 Circuits and Systems

Mapping from SV to hardware

5

We now take another example of a relative complex combinational circuit,
and see how we can specify our design in SystemVerilog.
The goal is to design a circuit that converts an 8-bit binary number into three
x 4-bit binary coded decimal values (i.e. 12 bit).
There is a well-known algorithm called “shift-and-add-3” algorithm to do this
conversion. For example, if we take 8-bit hexadecimal number 8’hff (i.e. all
1’s), it has two hex digits. Once converted to binary coded decimal (BCD) it
becomes 255 (3 BCD digits).

Lecture 9 Slide 5PYKC 11 Nov 2025 EE2 Circuits and Systems

Displaying a binary number as decimal

 In Lab 4 Task 2, you are required to display the counter value as binary coded
decimal number instead of hexadecimal. A SystemVerilog component
bin2bcd_16.sv is provided.

 Hex numbers are difficult to interpret. Often we would like to see the binary value
displayed as decimal. For that we need to design a combinational circuit to
converter from binary to binary-coded decimal. For example, the value 8’hff or
8’b11111111 is converted to 8’d255 in decimal.

6

Before we examine this algorithm in detail, let us consider the arithmetic
operation of shifting left by one bit. This is the same as a x 2 operation.
If we do it 8 times, then we have multiplied the original number by 256 or 28.
Now if you ignore the bottom 8-bit through a truncation process, you
effectively divide the number by 256. In other words, we get back to the
original number in binary (or in hexadecimal).

Lecture 9 Slide 6PYKC 11 Nov 2025 EE2 Circuits and Systems

Shift and Add 3 algorithm [1] – shifting operation
 Let us consider converting hexadecimal number 8’h7C (which is decimal 8’d124)
 Shift the 8-bit binary number left by 1 bit = multiply number by 2
 Shifting the number left 8 times = multiply number by 28

 Now truncate the number by dropping the bottom 8 bits = divide number by 28

 So far we have done nothing to the number – it has the same value
 The idea is that, as we shift the number left into the BCD digit “bins”, we make the

necessary adjustment to the hex number so that it conforms to the BCD rule (i.e. falls
within 0 to 9, instead of 0 to 15)

7

Our conversion algorithms works by shift the number left 8 times, but each
time make an adjustment (or correction) if it is NOT a valid BCD digit.
Let us consider this example. We can shift the number four time left, and it
will give a valid BCD digit of 7.
However, if we shift left again, then 7 becomes hex F, which is NOT valid.
Therefore the algorithm demands that 3 is added to 7 (7 is larger or equal to
5) before we do the shift.

Lecture 9 Slide 7PYKC 11 Nov 2025 EE2 Circuits and Systems

Shift and Add 3 algorithm [2] – shift left with problem
 If we take the original 8-bit binary number and shift this three times into the BCD

digit positions. After 3 shifts we are still OK, because the ones digit has a value of
3 (which is OK as a BCD digit).

 If we shift again (4th time), the digit now has a value of 7. This is still OK. However,
no matter what the next bit it, another shift will make this digit illegal (either as
hexadecimal “e” or “f”, both not BCD).

 In our case, this will be a “F”!

8

The rationale of this algorithm is the following. If the number is 5 or larger,
after shift left, we will get 10 or larger, which cannot fit into a BCD digit.
Therefore if the number 5 (or larger) we add 3 to it (after shifting is adding 6),
which measure we carry forward a 1 to the next BCD digit.

Lecture 9 Slide 8PYKC 11 Nov 2025 EE2 Circuits and Systems

Shift and Add 3 algorithm [3] – shift and adjust

 So on the fourth shift, we detect that the value is > or = 5, then we adjust this
number by adding 3 before the next shift.

 In that way, after the shift, we move a 1 into the tens BCD digit as shown here.

9

To recap: the basic idea is to shift the binary number left, one bit at a time,
into locations reserved for the BCD results. Let us take the example of the
binary number 8’h7C. This is being shifted into a 12-bit/3 digital BCD result
as shown above.
After 8 shift operations, the three BCD digits contain respectively: hundredth
digit = 4’b0001, tens digit = 4’b0010 and ones digit = 4’b0100, thus
representing the BCD value of 124.
The key idea behind the algorithm can be understood as follow (see the
diagram in the slide):

1. Each time the number is shifted left, it is multiplied by 2 as it is shifted to
the BCD locations;

2. The values in the BCD digits are the same as as binary if its value is 9 or
lower. However if it is 10 or above, the number is wrong for BCD. Instead,
it should carry over to the next digit. A correction must be made by
adding 6 to this digit value.

3. The easiest way to do this is to detect if the value in the BCD digit
locations are 5 or above BEFORE the shift (i.e. X2). If it is ≥5, then add 3 to
the value (i.e. adjust by +6 after the shift).

Lecture 9 Slide 9PYKC 11 Nov 2025 EE2 Circuits and Systems

Shift and Add 3 algorithm [4] – full conversion

 In summary, the basic idea is to shift the binary number left, one bit at a time, into
locations reserved for the BCD results.

 Let us take the example of the binary number 8’h7C. This is being shifted into a
12-bit/3 digital BCD result of 12’d124 as shown below.

10

Here is the SystemVerilog implementation of the binary to BCD algorithm.
You are invited to examine how the algorithm described in previous slides are
implemented in this behavioural description in SV.

Note that although this description looks like a software function, synthesis
program will produce hardware implementation of it, say, in FPGA.

Lecture 9 Slide 10PYKC 11 Nov 2025 EE2 Circuits and Systems

SystemVerilog implementation - bin2bcd_8.sv

11

Counters are good in counting events (e.g. clock cycles). We can also use
counters to provide some form of time measurement.
Here is a useful component called a “clock tick” circuit. We are not interested
in the actual count value. What is needed, however, is that the circuit
generates a single clock pulse (i.e. lasting for one clock period) for every N+1
rising edge of the clock input signal clk.
We also add an enable signal en, which must be set to ‘1’ in order to enable
the internal counting circuit.
Shown here is the module interface for this circuit in SystemVerilog.
Note that the parameter keyword is used to define the number of bits of the
internal counter (or the count value N). This makes the module easily
adaptable to different size of counter.

Lecture 9 Slide 11PYKC 11 Nov 2025 EE2 Circuits and Systems

A Flexible Timer – clktick.sv

 Instead of having a counter that count
events, we often want a counter to provide
a measure of time. We call this a timer.

 Here is a useful timer component that
uses a clock reference, and produces a
pulse lasting for one cycle every N+1
clock cycles.

 If “en” signal is low (not enabled), the clkin
pulses are ignored.

clktick

clk

en
N

16

tickrst

clk

count N N-1 N-2 - - - - 1 0

tick

12

The actual SystemVerilog specification for this module is shown here.
There has to be an internal counter count whose output is NOT visible
external to this module. This is created with the reg [N_BIT-1:0] count;
statement.
The output tick has to be declared as reg because its value is updated inside
the always block.
Also note that instead of adding ‘1’ on each positive edge of the clock, this
design uses a down counter. The counter counts from N to 0 (hence N+1
clock cycles). When that happens, it is reset to N and the tick output is high
for the next clock cycle.

Lecture 9 Slide 12PYKC 11 Nov 2025 EE2 Circuits and Systems

clktick.sv explained

 “count” is an internal counter with WIDTH bits
 We use this as a down (instead of up) counter
 The counter value goes from N to 0, hence

there are N+1 clock cycles for each tick pulse

clk

count N N-1 N-2 - - - - 1 0

tick

13

Using this style to design a clock tick circuit allows us to easily connect
multiple counters in series as shown here.
The clktick module is producing a pulse on the tick output every 50,000
cycles of a 50MHz clock. Therefore tick goes high for 20 nanosecond once
every 1 msec (or 1KHz).
The clktick module is sometimes called a prescaler circuit. It prescale the
input clock signal (50MHz) in order for the second counter to count at a
lower frequency (i.e. 1KHz).
The second counter is now counting the number of millisecond that has
elapsed since the last time reset signal (1R) goes high.
The design of this circuit is left as a Laboratory task for you to do.

In case you are not familiar with the schematic notation here (which is a IEEE
standard), C1/- indicates that the clock input is synchronized to the enable
and reset input (1EN and 1R), and it results in circuit counting DOWN (‘-’
sign).

Lecture 9 Slide 13PYKC 11 Nov 2025 EE2 Circuits and Systems

Cascading counters

 By connecting clktick module in series with a counter module, we can produce a
counter that counts the number of millisecond elapsed as shown below.

50MHz

tick

1ms
CT cnt cnt + 1 cnt + 2

clktick

50MHz

1EN

16’d49999
16

tick

counter
16

Elapsed time (in ms)1’b1 1EN cnt

1R
reset

C1/- C1/+
1R

14

Here is yet another useful form of a counter. I call this a clock divider. Unlike
the clktick module, which produces a one cycle tick signal every N+1 cycle of
the clock, this produces a symmetric clock output clkout at a frequency
which is the input clock frequency divided by 2*(K+1).
Shown here is the module interface in SystemVerilog. Again we have used
the parameter statement to make this design ease of modification for
different internal counter size.

Lecture 9 Slide 14PYKC 11 Nov 2025 EE2 Circuits and Systems

Clock divider (clkdiv.sv)

 Another useful module is a clock divider circuit.
 This produces a symmetrical clock output,

dividing the input clock frequency by a factor of
2*(K+1).

clkdiv

clkin

1EN

K
16

clkouten

clkin

count N N-1 N-2 - - - - 1 0 N

clkout

C1/-

15

The Verilog specification is similar to that for clktick. This also has an internal
counter that counts from K to 0, then the output clkout is toggled whenever the count
value reaches 0.

Lecture 9 Slide 15PYKC 11 Nov 2025 EE2 Circuits and Systems

clkdiv.v explained

clkin

count N N-1 N-2 - - - - 1 0 N

clkout

clkdiv

clkin

1EN

K
16

clkouten

C1/-

16

To specify a shift register in SystemVerilog, use the code shown here. We use
the <= assignment to make sure that sreg[4:1] are updated only at the end
of the always block.
On the right is a short-hand version of the four assignment statements:
 sreg <= {sreg[3:1], data_in}

This way of specifying the right-hand side of the assignment is powerful. We
use the concatenation operation { …. } to make up four bits from sreg[3:1]
and data_in (with data_in being the LSB) and assign it to sreg[4:1].

Lecture 9 Slide 16PYKC 11 Nov 2025 EE2 Circuits and Systems

Shift Register specification in SystemVerilog

data_out

sreg[4]
sreg[3]

1D

C1/è

1D

C1/è

1D

C1/è

1D

C1/è
data_in

clk

sreg[2]sreg[1]

sreg[1]
sreg[2]
sreg[3]

output

17

We can also make a shift register count in binary, but in an interesting sequence.

Consider the above circuit with an initial state of the shift register set to 4’b0001.
The sequence that this circuit goes through is shown in the table here. It is NOT
counting binary. Instead it is counting in a sequence that is sort of random. This is
often called a pseudo random binary sequence (PRBS).

The shift register connect this way is also known as a “Linear Feedback Shift
Register” or LFSR. There is a whole area of mathematics devoted to this type of
computation, known as “finite fields” which we will not consider on this course.

Lecture 9 Slide 17PYKC 11 Nov 2025 EE2 Circuits and Systems

Linear Feedback Shift Register (LFSR) (1)

Q1
1D

C1/è

1D

C1/è

1D

C1/è

1D

C1/è
clk

Q2 Q3 Q4

XOR

u Assuming that the initial value is 4’b0001.
u This shift register counts through the sequence as

shown in the table here.
u This is now acting as a 4-bit counter, whose count

value appears somewhat random.
u This type of shift register circuit is called “Linear

Feedback Shift Register” or LFSR.
u Its value is sort of random, but repeat very 2N-1

cycles (where N = no of bits).
u The “taps” from the shift register feeding the XOR

gate(s) is defined by a polynomial as shown
above.

18

The circuit shown below is effective implementing a sequence defined by a polynomial
shown: 1 + X3 + X4. The term “1” specifies the input to the left-most D-FF. This signal is
derived as an XOR function (which is the finite field ‘+’) of two signals “tapped” from stage
3 (i.e. X3) and stage 4 (i.e. X4) of the shift register.

For example, for order 4, the table shows an alternative primitive polynomial:

1 + 𝑋 + 𝑋!

This will produce a pseudo-random sequence which is also maximal length different
from that using the polynomial in the slide (1 + 𝑋" + 𝑋!).

Lecture 9 Slide 18PYKC 11 Nov 2025 EE2 Circuits and Systems

Primitive Polynomial

u This circuit implements the LFSR based on this primitive polynomial:
u The polynomial is of order 4 (highest power of x)
u This produces a pseudo random binary sequence (PRBS) of length 24 - 1 = 15
u Here is a table showing primitive polynomials at different sizes (or orders)

Primitive polynomial: 1 + X3 + X4

19

Here is the implementation of a 4-bit LFSR of the primitive polynomial

1+𝑋! +𝑋"

This is essentially a shift register with data_in feed from an XOR gate with Q3
and Q4. Note that we MUST initialize the shift register to a value other than
4’b0000 (e.g. 4’b0001 will do).
This module has not been parameterized because for different WIDTH, we
need different primitive polynomial!

Lecture 9 Slide 19PYKC 11 Nov 2025 EE2 Circuits and Systems

lfsr4.sv

Q1
1D

C1/è

1D

C1/è

1D

C1/è

1D

C1/è
clk

Q2 Q3 Q4

XOR

Primitive polynomial: 1 + X3 + X4

